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ABSTRACT

In a cylindrical region we consider? lectromagnetic fields independent of

the axial coordinate: controlling the time evolution of such fields by means

of boundary currents, likewise independent of the axial direction, is

equivalent to controlling, simultaneously, two wave equations one with

boundary control of Dirichlet type, the other of Neumann type. In This paper

(ePprovde:,l preliminary study of control problems of this type and indicate

what is necessary for extensions of our work.
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SIGNIFICANCE AND EXPLANATION

This paper concerns the controllability of the Maxwell electromagnetic

equations in a cylindrical spatial region by means of controlling currents 4

caused to flow on the boundary of the region. Here controllability refers to

the ability to transfer from electric and magnetic fields, given at the

initial instant, to corresponding fields prescribed at a later instant.

Studies of this type are significant in relation to wave guides, EM-pulse

devices, radar non-relective (stealth) aircraft, controlled thermonuclear

fusion and many other important applications.
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THE DIRICHLET-NEUMANN BOUNDARY CONTROL PROBLEM ASSOCIATED
WITH M4AXWLL'S EQUATIONS IN A CYLINDRICAL REGION

0. L. Russell

1. BACKGROUND.

In this paper we consider a region R 3 , not necessarily bounded, having piecewise

smooth boundary r and almost everywhere uniquely defined unit exterior normal vector

V . vCx#y~z), (x,y~z) e r. It is assumed that the region 0 is occupied by a medium

having constant electrical permitivity E and constant magnetic permeability Ui. We have

then, in 0, the paired electric and magnetic fields

3 E (xfy,zft) 0

H =H(x,y,z,t),

having finite energy

2(t) ..1/2fff (C111 2 + Uaffi 2 )dv,(1)
a

where I I denotes the usual Euclidean norm in R3. As is well known (U4], (9)), £and

N satisfy, in 0* Maxwell's equations

curl H =e at (1.2)

div P (1.4)

div H=0, (1.5)

where p - p(x,y,z,t) is the electrical charge density in 01 - which is zero throughout

this paper. (That equation (1.5) might eventually have to be modified to account for

magnetic monopoles will trouble us not at all herel)

* Sponsored by the United States Army under Contract No. OAAG29-8O-C-0041 and supported
in part by the United States Air Force Office of Scientific Research under Grant
AIPOSR-79-0018S

ELA



W

Control problem associated with Maxwell's equations have been of interest primarily

in connection with nuclear fusion applications - in which case p is not identically equal

*to zero and the Maxwell equations are coupled with the dynamical equations governing the

plasma evolution. In this connection we cite the work of P. K. C. Wang [29], [30], [31].

The point of view which we take here is that we cannot hope to treat these more complicated

*problems until we have a firmer grasp on the control theory of Maxwell's system in its own

right. In this direction some work on controllability with control influence distributed

throughout 2 has been carried out by G. Chen [21 , [3). We are primarily concerned here

with the possibility of influencing the evolution of the fields I and A by means of an

externally determined current 3(x,y,s,t) flowing tangentially in r so that

S(xy,z,t).
4
(x,y,z) = 0 , (1.6)

for (x,y,z) e r where (x.yz) is defined. We will assume that the normal component of

vanishes outside 0 and that no charge is permitted to accumulate on r. Then we have

the boundary conditions (see e.g. (4], [28])

EI(xyZt)*V(xPyOz) = 0 (1.7)

fT (xyfz,t) - V(x,y,z) x S(x,y,z,t) (1.8)

for (xy,z) e r such that *(x,y,z) is well-defined. Here, and subsequently, the

subscript T refers to the component of the vector in question which is tangential to r.

Similarly, the subscript v will denote the normal component (thus (1.7) is the same as

IV 
= 

0). writing

I + i T on r,
V T

3=+3.3 on r,V T

we see that (1.8) becomes T= X 3 ., so that HT is a vector tangential to r and

perpendicular to 3 = sT.

The state space in which we study solutions of the above system will be denoted by

H X,d(0)1 it is s closed subspace of the space H 3 (1) of square integrable six-

dimensional fields (I(x,y,z,t), A(x,y,z,t)) with the inner product and norm

-2-



<4104 I12- a 2)> Ilf 1l' 2 + U91.9t2 )dv

U

I =t ((,A)1(tfI> . (1.9)

Clearly H (0) is a real Hilbert space with this inner product. Where a complex space is

required, we employ conjugation as usual. The state space HN,d () is the closed span in

H a(0) of those continuously differentiable fields (E(x,y,x,t), H(x,y,z,t)) for which
3±

+ Ex yE B z
div E= -+ + - 0

3H 3H 3H

div H- T.x+ 5y + -z - 0

If 1 and I are two smooth solution pairs for (1.2)-(1.5), (1.7), (1.8),

the first corresponding to 3 B 0 on r, we see easily that

dt
Tt <4i0 1A 0 )A 1> =

A I 3 o  + A A
fII (c[K j+~ -

1] ++[HO L! + -' ])dv

= (using (1.2), (1.3)) =

*0I curl )ldV

Rfff o curl H 1 -curl E. H 1 + curl HO "  - o.c

= (using div (E x H) = curl " - A * curl A)

" - (div(10 x ) + div(# 1 x 0 )]dv

ff (0 x A + H Vds= (using (1.7))
r 1 1 0

-ff (10TXaI xA +K EO I + AT x a +11 x a ) *vds
r

-3-
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r

(using (1.8) and noting that J 1 0 for fop A a

" - JI T- 3 )ds . (1.10)
r

If we go through the same computation with both replaced by the same H

satisfying (1.2)-(1.S), (1.7), (1.8) we find that

dl-- - jj (I x J) • d -Us f " d . (1.11)
dt

r r

For 3 - 0 generalized solutions of (1.2)-(1.5), (1.7), (1.8) can be discussed in the

general context of partial differential equations and strongly continuous semigroups. The

generator

0,A) curl 4, curl 1) (112)

with domain consisting of CA in the Sobolev space HI d(S)(-1, (P() l(M)) having

zero divergence and satisfying (cf. (1.7), (1.8))

r - 0, 0(11)

is antisymetric and generates a group of isometries in HZd(a). (See (321, [331, (341

for related work.) Sufficient conditions on a so that solutions of the inhomogeneous

system (1.2)-(1.5), (1.7), (1.8) lie in t, d(n) and are strongly continuous there may be

obtained such as in [181, [19) but it in not easy to specify necessary and sufficient

conditions. Indeed, this is already difficult for the much simpler, but related, wave

equation

P 2w 32 w 32w 32w

Ot2  3x 2  3y2 U 
2

with boundary forcing terms. We will make some coaments related to this in Section 6.

-4-
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2. CONTROL PROBLEMS IN A CYLINDRICAL REGION

The main point in this paper is to study the question of controllability of the

electromagnetic field AA by means of the boundary current 3 " 1r" By controllability

we mean the possibility of transferring an initial field 1(x,y,z,0), A(x,y,z,o) e

H U'd(9), given at time t - 0, to a prescribed terminal field E(x,y,z,T),

A(x,y,z,T) e Nd(a), specified at t - T > 0, by means of a suitable control current

S(x,y,z,t) defined for (xy,z) e F, t e 10,T]. Because the homogeneous Maxwell

equations correspond to a group of isometries in H ud( (). it is enough to consider the

special case wherein

1(x,y,z,O) 0 , (2.1)

A(X,y,z,O) B 0 * (2.2)

For a given space, J, of admissible control currents 3(x,y,z,t) - T(x'y'z't) defined

on r x [0,T] we define the reachable set R(T,J) to be the subspace of H ,d(a)

consisting of states reachable from the zero initial state using controls a e J.

Following earlier definitions (81, [26]), our system is approximately controllable in

time T if R(T,J) is dense in B#d (0) and exactly controllable in time T if

R(T,J) - Kd(2) (or some precisely designated eubspace of HE,d(a)).

At this writing we are not able to discuss the general three dimensional problem

wherein the vector fields I and A are unrestricted, except as stipulated heretofore,

and 2 has a general geometry. We hope in later work to consider at least some three

dimensional cases which arise for special domains 0. But for now we mst content

ourselves with the case in which 0 is a cylinder:

2O - Rx C-.,.) . {(xy,z)i(x,y) e R CR , z real)

where R is an open connected region in R
2 

with piecewise smooth boundary B. Thus

30 - DR x (-,-) - a x (-,w) .

Even here we can give results only for special two dimensional regions 2.

The two dimensional problem in the cylinder 0 = x K (-.*,w) occurs when we confine

attention to fields

E -(X.y.t), H -(x,yet)



which do not depend on the coordinate z corresponding to the axial, or longitudinal,

direction of the cylinder. (Note that this is not at all the sam thing as requiring

that t, 1w, the field components in the z direction, should be zero.) We

correspondingly consider only control currents

3 - 3(x,y,t)

which do not depend upon z.

Of course the energy 3 in 0 is infinite under the above circumstances if ,

are not identically zero. We redefine 8 to be the energy per unit length of cylinder:

3(t) =112ff (C11(x,y,t)12 + (II(xyt)1")dxdy . (2.3)

R

The space H d(0) is now replaced by Hd(R). Because

3,d d

aEz(X,y,t) 3H (x,y,t)

z 3az 0 , 0

we have

X d -+ dv H T.- + a (2.4)

The curl expressions simplify to

3E z  aEz  alt 32

3Hz  amz  am y a x

o that the equations (1.2), (1.3) become

3E 3H~ 3H BEX  Hz  x  z

(i) C - (iv) u -1- -

(ii) Dt z (v) V (2.5)

IHz ! Hx (vi) _ P _% 0 +

Ciii) ta ax By (vi) a jt- x ay

-6-



It is clear from (2.5), (i)-(vi), that if I(XYO), +(x,y,O) are given, then the

subsequent evolution of Ez(x.y,t), Hz(x,y,t) determine all of the other components. As

for these components themselves, differentiating (2.5) (iii) and (2.5) (vi) with respect

to t and then substituting (2.5) (iv), (v) and (2.5) (i), (ii) into the respectively

resulting expressions, we obtain the familiar wave equations

a2 E a2 E a2
S2E SE S2E

z S z

t 2 2 (2.6)

a2H a2H a2 H

at 2 -2+ a2 (2.7)

valid for (x,y) e R, t e [0,-), provided Ez , H5  have enough derivatives, or provided

the equations are interpreted in the distributional sense. Assuming the initial states

I(x,y,O), ?(x,y,O) are divergence-free, we compute (cf. (2.4))

3E 3E
£ -+ (using (2.5) i), (ii))

a2 H a2H

and similarly

Sn SM

and we conclude that the fields remain divergence-free for all time.

Suppose, then, that divergence-free initial states I(x,y,O), A(x,y,O) are given.
3E

Then Ez(x,y,O), Hz(x,y,O) are known and (2.5) (i1), (vi) determine az (x,y,O) and

-it (x,y,O). If (2.6), (2.7) are then solved with these initial conditions, and

appropriate boundary conditions, the complete solution of Maxwell's equations (2.5)

(i)-(vi), can be obtained by integrating (2.5) (1), (ii), (iv), (v). Thus it is enough to

work with (2.6), (2.7), and it should be noted that the divergence condition does not have

any bearing on Ez, Hz; it can be ignored henceforth.

-7-
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= 3R ,1(-,B

V

Figure 1. The Region m

It is important to recast the boundary conditions (1.7), (1.8) so that they provide

boundary conditions for (2.6), (2.7). we ask the reader to consult Figure 1, where the

region R with boundary OR = B is shown. At a point (x,y) e B we let = (x,y)

denote the unit exterior normal to B and we let 0 - a(x,y) denote the positively

oriented unit tangent vector to 3 there. With to the unit vector in the positive z

direction, t, 8, 1 form a positively oriented orthogonal triple of unit vectors. Given

an arbitrary vector w we can decompose it as

= (w VwaowC(-w z) I
IwI2 .w 2 w2

The tangential part of A, which we have designated as may now be represented as

H I +( 2.8)

and the current 3 =  may likewise be represented as

. i

T z

Then

.....................- ILL .' .



Vx - x3 -X X (JI + J) -i + za (2.9)

Combining (1.8), (2.8), (2.9) we see that on B

Hz (X,y,t) -a (x,y,t) , (2.10)

H a (x,y,t) - -J z(x,y,t) . (2.11)

Represent V, 0 as

v . V x + V y , (2.12)

a ax + a A -V + V n (2.13)

Then compute

aE aE aEz Z Z3 V + a-- Vy (using (1.3) , (2.13)
v x y y

3H 3H 3HIj a y + P F x Uat-

(using (2.11)) - . (2.14)

The equations (2.10), (2.14) provide the needed boundary conditions for (2.6), (2.7)

respectively. For Hz we have the Dirichlet-type boundary condition (2.10) while for

Ez we have the Neumann-type boundary condition (2.14). If we let

U(X,y,t) (XYt

+ +

and differentiate (2.10), we have the more symmetric form

Z (x,y,t) - U (x,y,t), = -Uz(x,y,t), (x,y) e B . (2.15)

We complete this section by discussing the question of expression of the energy per

unit cylinder length, (2.3), solely in terms of H. and Ez .

We consider the equations (2.6), (2.7) with homogeneous boundary conditions

3H aE

t (x,y,t) " 0, T (x,y,t) 0, (x,y) e B

-9-



We Use the Symbol A for the Laplacian:

;)2  ;)2
;x2 2

ax ay
Initially we take WzO Ez  to lie in the Sobolev space H

2 
(R). This space must be

decomposed in order to attach a meaning to A
- 1

.

The boundary condition for 1R, may be rewritten as

H5 (x.y,t) - h(x,y), (xy) e a

where, by the trace theorem, h e H3/
2
(9). Then we can write

Hz(XYt) z H (x,yt) + z(X,y)

where Hz (x,y) is the solution of

AHz(x,y) - 0, Hz (xy) - h(x,y), (x,y) e n

and

H (x,y,t) * 0, (xy) e a
z

The inverse Laplacian A
-1  

is well defined on the functions Hz" For z  we may write

Ez(x,y,t) = z (x,y,t) + i z(t)

where EZO as indicated, is constant with respect to (xy) e R and

f ;z(x,yt)ds - 0

It is well known that A- is well defined on the functions Z .z

We proceed first on the assumption that

HZ(x,y,t) = H (x,y,t), tz(X,y-t) = (X.y,t)

We form new solutions of (2.6), (2.7) by setting

atz  ZI T z I

3E z -3 H

G CA
Gz  FtA

"  -, F. - ph

We then determine Gx, Gy, Fx, FYI using the equations (2.5) with replacing

replacing , so that and satisfy Maxwell's equations:

-W0-
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p L -curlF

St curl G

It will then be found that

E curl F, A - curl a

Following this, (2.3) can be written as

9(t) -"/211 (eicurl h 2 + ilcurial,2)dxd
R

IF 2 IF 2 IPy 37F. 21'/2 I ,[(ax' + (ay) a. I,,)
R

aa 2 DG 2 aG 3G 2_A)--- +, +W ( Cy.; - )]dd, (2.16)

Then from (2.16) we have

3F 2 IF 2 aG 2

,(t) =,112f tc[C(x-) + -. z)-
+ (V , a)

3G 2 3G 2 + F 22T ,C-x-- -- ( 1) " ,: --- ]
S -+ (

3F 2 I7 2
= '21 c(~.) + ( Z) + (21

S3G 2 +3G 2

Now consider the quadratic form (for Ez =z

zi

-11-



as! -I- DG
2G a 2G

32G

( (mince G. satisfies the wave equation et 2 z AG

and the boundary conditions Gz(x,y,t) - 0, (x,y) e 8)

3G 2 G2

2 -, ,) 12 1 (y- T Z)

Similarly

3H l am OF 2 OFX 2

cli

from which it follows that

3t if l asu!. £1 aa 3H -3Ha 2 213 (t (. I-,)2[( -, + u ) dxdy
zs- %- ' -11 + E(E. ,..2,a

Ut

I I finite states - a fact which will be very careful later.

It is necessary to modify this expression for general Ez , Hz . We begin with

Ez(Xy,t) - I Czt) •

The only possible solutions of the wave equation (2.6) satisfying . 0 andhhavin

this form are

Es(xyt) - e0 +e*t

where a0  and el are constants. (Such solutions are consistent with a constant boundary

current J for which J = 0.) The correpponding x, E, H. are zero but

3 z  aH 3H
Ce 1  --- -

It is not possible to express this quantity in terms of E. itself or Hz. It is better
az

to leave it in the form £ T "--. Solutions of Maxwell's equations with Ez  having this

form have energy expressible as a quadratic form in Z. and a--.z

-12-
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7. .sm .l........

Next we consider H. " Hz as described earlier. Such a solution is consistent with aiz

boundary current for which J= 0, constant with respect to time but possibly varying

with (x,y) e B. we may take Hx, Hy, 3z  all zero. However,

DE 3H z  3E 3Ha

t- "y' 3t 
3
x

so we may not assume that Ex  and Ey are equal to zero. The energy associated with

solutions of this type is expressible in terms of

ff[(H)H 2 ;Hz )'ddI/~~ [31x'"2)2 + Cils],xy

if integration with respect to t is permitted. In the sequel we will not explicitly

consider the timewise linear electric fields satisfying the above equations.

We see then that a norm involving only E. and Hz and compatible with the energy

(2.3) may be expressed as

,,z#H )1,2 (-5)
2 [(- I + Z- z)] + C; .)2 + Uz(;)

o )2 + 2 a 2 az 2
1 + ao(y-) + o,(y) ]dxdy(2.17)

where P1 F.PO, are positive numbers. It will be seen that this is a weaker norm than

the one associated with a pair of wave equations, viz.:

1(5 12 =3E 2 3H 2 2 (".."# ' " ) I f lu(Cn-)3 + ( - ) ] + ,VE , + ,vI } 2 d .dy (2.18)
Rz

We will denote the Hilbert space of states Rz, HZ# a - lying in HI(R), H
1
(R),

L
2
(R), L

2
(R), respectively, by H. This space will be very convenient for use in the

remainder of this paper. In some cases we will add boundary conditions to the

specification of H, the space with norm 1 1, without changing the symbol, to correspond

to an agreed specification of the states in ; by similar boundary conditions.

-13-



3. SOlE! CONTROL CONFIGURATIONS

We describe here two possible realizations of the control problem which we have posed

and indicate why we have chosen the mathematically more interesting (i.e., more difficult)

one to work with in this paper.

Let us assume that r - a n x (.a,%

is covered by one or more layers of conducting

bars, arranged in rows as shown in Figure 3. 1.

In the case of a single layer of conducting

bars shown in Figure 2(b), the bars are arranged

so that they make an angle 6, 0 < 161 <

with the vector 0 (cf. Figure 1), while in

the double layer case (Figure 2(a)) they are Figure 2(a). Double Layer Control

arranged so that the bars in the second layer

make an angle *, 0 < , ( , 1 < 6, with

the vector U. The current in any row of bars

parallel to the x-axis is independent of ,

i.e., constant for all bars in that row. As -" -.

we consider successively smaller bars we -.- -- - _

obtain, as an idealization, the boundary

current vector

Figure 2(b). Single Layer Control

S(x,y,t) - 3(xy,t)(cos 6* + sin el) (3.1)

in the single layer case, J(x,y,t) denoting the current strength with the sign determined

so that J positive yields a positive current component in the 0 direction. The

corresponding formula in the double layer case is

3(x.y,t) - JI(x,y,t)(cos 80 + sin 91)

+ J2 (x,y,t)(coa t + sin ) . (3.2)

The current components are, in the single layer case

J a(x,y,t) - J(x,y,t)coa 0 ,

J (x,y,t) = J(x,y,t)sin 6 ,

-14-
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and in the double layer case,

a(~x;:;n] Co Cos5 # co I (~xY~t)

i a (,Y~tl si sin # 2*XYt

The determinant of the matrix in (3.3) is sin Cl )$0 if Is* in the range

0 < Ji61 < 1, 0 < 1*1 < 1. Thug in the double layer case J and J~ are independent2 2 az

ifi arl J are independent while in the single layer case Jaand J . are fixed

non-zero multiples of each other.

The double layer case is easily disposed of in the light of earlier work on boundary

control of the wave equation. Referring back to (2.10), (2.11) we now have, for

(x,y) e a - at t e (,)

3H z
-Ft- (x'y't) -C %(x~y~t) - cos e u I(x'y't) + cos U u 2 Cxyt)#

TVz(x'y't) =-U z(x'y't) - -sin S u (x'y't) + cos' # u 2 (x'y't)

312
u 1 (x'y't) (x'y't), u 2 (X'Y't) = -(x'Y't)

Since U5  and U z are independent if ul and U2  are, the control problem splits into

two uncoupled wave-equation problems, one for Zzand one for H * These have been

discussed thoroughly in (21, (31, (151, [16], (221, (23], (25] with affirmative

controllability results for various control configurations and will not concern us further

here.

In the remainder of this paper we study the single layer case. If we let

u(x,y,t) - t (x,y,t) (3.4)

we now have the wave equations (2.6), (2.7) for Zz' Rz and the boundary conditions

z 33

(x,y,t) =cogo j (x,y,t) 3 u(x,y,t) *(3.5)

-15



-" ,.t) - -sin a Pt (x, ,,) .a Iu(X,,,) (3.6)IV

The control problem for 1. and R. are now coupled because the single control

function, ulx~y,t), appears in the bounda zy oonditione for both 2, and Hz! we have to

contol both systems simultaneously using the saw control function.

If ve rely on experience in a single apace dLmension. which has proved generally quite

helpful in the control theory of a single wave equation, we are led to believe that systems

like (2.6), (2.7), (3.5). (3.6) may, in fact, be controllable. Replacing u(xy,t) by

UO(t), ul(t) and taking 0 ( x 4 1, the one dimensional equations are, using variables

V. V2. 2 2i2v i~v

2 92 0 (3.7)at2  x 2

vv iv
w - -(3.9)

av ivtx (O,t) - -5Uo(t), i-x a1t -Pu 1 (t) (3.10)

(note that " corresponds to the exterior normal derivative at 01. Letting

2;a (3.11)

ax

wefind that

at a2x

and

3
2

-w w
2  

(3.14)
at 2 ax2

Differentiating (3.11) with respect to t and using (3.8) we have
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2l v lv
_._ (0,t) - (0,t) u u(3.15)

pi px 2 P ax.15

2
l v iv
~i2 (l't) - 1 L (l't) =!u;(t) 0 (.16)

while differentiation of (3.12) along with (3.10) yields

2 -

atax (0,t) - - (Ot) - -Bu;(t) , (3.17)

2

tx(,t) =- (lt) - Ou'(t) (3.16)

Combining (3.13) with (3.14), (3.15), (3.16), (3.17), (3.16), we see that

Cy + - ;, 6v - - ; both satisfy the wave equation and
p p

a (o; + o ,)0.t) - l (8; + ' )(,t) - _ u(1)
ix p Ox p P

- a -- a5,(,.t-.
(v -w(o, t) 20u;(t), (jv - )(1,t)-o
P p 0 a' x p

Thus the control problems for IOv + - and I - - w are both of Neumann type and are
0 p

uncoupled. Affirmative controllability results are then available from [201, 1211, (24].

If we replace uo(t) (or ul(t) by 0 in the above, then 6 - S ; (or 0; + )p p

will become completely uncontrollable and our original system must therefore be

uncontrollable. This result at first seem to predict failure for the enterprise which we

nov undertake for the two dimensional case.
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4.* APPROXINA?3 BOUNDARY CONTROLLABILITY

By a simple change of scale in the t variable, and renaming of the independent

variables, we may assume that the system of interest in

2 2 2 xyeR

2 2 +;2 (4.2y)e

at2  ax2  ay

with boundary conditions

a(x'y't) - au(x,y,t) (4.3)I (x,y) e B 3

we will not, in general, assume that u(x,y,t) can be selected at will for all values of

(x~y,t) shown. More on this later.

Because the system is time reversible, it Is sufficient to analyze controllability in

term of control from the zero initial state

v(x,Y,O) - -= ''0 (4.5)
at(xyO 0

(x,y) e R

3wj
w(x,Y,0) - T- (X'y,0) . 0 ,(4.6)

to a final state

0 at

w(x,y,T) - w (x,y), Lw(x,y,T) w w(x,y) (4.8)

ats



II

We have noted in Section 2 that the I I- finite states are dense in the | I- finite

states. In the present context this means that we can work with the Hilbert space of

Dv awstates v, FP w, i with the inner product

Ov, aw) p 3;;

[% v+3 w+3vI wf v v+a wdd (4.9)

a space which we will refer to as ;. The norm is I (cf. (2.18)) with Me - 1. As we

have indicated, this is a dense subspace of H, the Hilbert space obtained by use of the

norm I I (cf. (2.17)).

The final states (4.7), (4.8) are not quite arbitrary in ; if the control u is

restricted so that its support is contained in a proper relatively closed subset Sic B.

Since the condition

tF (x,y,t) = a u(x,y,t), (x,y) e B

applies, we may as well adjoin the additional condition

v0 (x,y) = 0, (x,y) e B - a, = . (4.10)

The trace theorem (M1], [19]) assures us that this describes a closed subspace of H,

which we will call ;. The only restriction on ;e is (4.10); v0  is permitted to have

arbitrary values in H1/ 2 (3 1 ) and w0 , w, are unrestricted in HI(8), H0(R) - L2 (R),

respectively.

Let U be a given space of admissible control functions, about which we will shortly

have more to say. ror each control u e U we assume the existence of a unique solution

vu, wu of (4.1)-(4.6) for t > 0, (x,y) e ft. Very general sufficient conditions for this

to be the case are given in [19]. we define the reachable set at time T, R(U,T), to be
av aw

the set of all final states vu(x,y,T), aU (x,y,T), Wu(XtyT), a (xy,T) which may be

realized in this way. The set R(U,T) is a subspace of ;1  if U is a linear space,

which we will assume, and our system is approximately controllable in time T if R(U,T)

is dense in H1  (then R(U,T) is also dense in H because I I is a weaker norm than

I I and H1  is dense in H). Evidently R(U,T) is dense in jI just in case, given an

-19-
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arbitrary state in Hit

((c yi. Vu ; xy,); 0 1 ;0 ;)u

[(((vCX,Y,T), !- (x.y,T), w (x,y,T), L (XY,T)),(;OVl*;O,. 0

u e U, -> (v0-) ,,;0,;, )  0. (4.11)

Let ;(x.ywt), ;(xeyot) be the unique solution of (4.1), (4.2) satisfying the terminal

conditions at time Ts

v(x.,y,T) - vo , (x,y,T) - v1 , v(x,y,T) . W o , r- (x,y,T) w 1 ' (4.12)

and the homogeneous boundary conditions

; (x,y,t) - 0 , (4.13)

(xy) e B, t > 0

-V (xy,t) " 0 ' (4.14)

Computing the quantity

3v 3wd ( --~tL (x#Y,t), wu(X#Y,t), Lu (x,y,t)) I

; 3 (x,y,t), ;(x,y,t),) ,

using familiar duality theorems involving the Laplacian and integrating from 0 to T

(see (221, (231, (26] for details in the case of a single wave equation) we see that

ivv 3x"uv Tt-Tt'(v(,.' , I (,,.1) (u,,,, I x? ,*'l V.V.oW)

-f f [v~t (x,Y,t) 3 u(Xyt) + !:(x,y,t) Lv. (x,y,t)
0 a Vu av at

0w a

+ Lw (xy~t) (xy,t) + (xy,t) (xy,t)]dsdt (4.15)

Then using the boundary conditions (4.3), (4.4), (4.13), (4.04) we see that the above

-20-
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reduces to

-(xyt) + (xyt)]u(xyt)dsdt (4.16)

If, as discussed above, we suppose that 8 has the disjoint decomposition

a-30U8 1 U

with B1 relatively open in 3, and that u(xyt) E 0, (xy) e Do while on a, u is

unrestricted save for the specification of the admissible space (e.g., we might take

U = C(B 1 x [0,T]), U = L 2( 1 x [0,) , (4.17)

or any of many other possibilities), and if we suppose the first equation in (4.11) to

hold, we conclude that (4.16) vanishes for all u e U. We know from the trace theorem

([I], 1191) that the partial derivatives

restricted to 3, all lie in H
1
/
2
(s) for t e (0,T] and vary, with respect to the norm

in that space, continuously with respect to t, i.e. they lie in C(H1/
2
(3); (0,T]). We

suppose, as is the case for (4.17), e.g., that U includes a total subspace of the dual

space of C(H1/
2
(31)I[0,T]). Then the fact that (4.17) in zero for all u e u implies

3V w
a 3 (xy,t) + B ! (xy,t) = 0, (x,y) e 91, t e [0,T) . (4.18)

We also have (cf. (4.13), (4.14))

3; 3;
- (x,y,t) - 0, a (x,y,t) - 0, (x,y) e S1 , t e [0,T) . (4.19)

The boundary values of ; and Z are therefore overspecified on 81 x [0,T). The proof

of approximate controllability, where it can be carried through, depends upon being able to

use this overspecification to show that

v(x,y,t) B 0, w(x,y,t) - 0, (x,y) e R, t e [0,T]

and therefore to conclude that the implication (4.11) is indeed valid so that R(UT) is

denee in H and hence in H. We carry this argument out for the case in which R is a

rectangle and 8 1 is one of its sides in Section 5.

-21-
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Follovinq the development in 16], it may be soon that our system is exactly

controllable in ;,# using the control space U - L 2(B X [0,T]), just in case

,6 + 0 )o KI(v 0 ,Vi0 gW 1,; )1 (4.20)

L 2(3I1 0,T])I

for so K > 0. In general this is a very difficult result to obtain but we are able to

obtain exact controllability, by other means, for the case where I is a disc in R
2

and 8 1 - B is its boundary, a circle. This result is developed in .. ction 6 where it

will be seen that it is heavily dependent on certain properties of the Bessel functions.

-22-

NUNN I



5. THE CASE R - A RECTANGLE, I3= ONE SIDE.

The work here can be carried out for a rectangle with arbitrary dimensions, but all

essential ideas are contained in the notationally simpler case

a = {(x,y)Io 4 x • w, 0 4 y 4 ,

to which attention is restricted henceforth. We will assume that B1 , the portion of the

boundary on which control is exercised, is one side of R, without loss of generality it

is the set

B= {(W'y) O < y < W) (5.1)

We consider then v, w satisfying (4.1), (4.2) in R x [0,T) for some T > 0, and also

satisfying boundary conditions

a" (x,y,t) = 0, L- (x,y,t) = 0, (x,y) e B = BR, t e [0,r] , (5.2)
at av

- (",y,t) + a L ,

= (iy't) + 0 L (i,y,t) = 0, 0 4 y ( w, t e [0,T] . (5.3)
ax a

We may assume without loss of generality, since the wave equation is time reversible

with either Dirichlet or Neumann boundary conditions, that and w are extended to

satisfy (4.1), (4.2) on - < t < w and that the boundary conditions (5.2) hold for

(x,y) e B, t e (-,-). We may not assume that the boundary condition (5.3) is applicable

beyond 10,T], however, if controls are restricted to have support in B, x [0,T]. Let

6 > 0 and let s(t) be an arbitrary function in C (-,) with support in (6,6).

Define

v(x,y,t) - f s(t - T)v(x,y,T)dT , (5.4)

w(x,y,t) - f s(t - T)w(x,y,r)dT . (5.5)

Then v, w are solutions of the wave equations (4.1), (4.2) satisfying boundary conditions
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(x,yt) - 0. (x,yt) - 0, (x,y) e 3 - a3, < t < (5.6)

while
av a.

a T- (TWy t) + 3w (1,y,t) - 0, 0 4 y 4 1, t @ [6, T - 6) . (5.7)

Moreover, it can be shown that v, w are of class C for (x,y) e R, < t < 1. If we

can show v E 0, w E 0 for any such choice of s, then v 5 0, S 5 0.

Let us define, for (x,y) e R, - < t < -,

av 3w

*(x,y,t) - a (x,y,t) + T- (x,y,t) . (5.8)

From (5.7) we have

*(w,y,t) - 0, 0 4 y 4 w, t e [6, T - 6] . (5.9)

Since a and B are constants we have

1 21 + a2#, (x,y) e R, - < t < (5.10)
St

2  ax
2  ay2

Let us note that, since v satisfies the wave equation in R U B,

a 2 v (x,y,t) + B Ftax (x,y,t)

at 2

- af (x,y,t) + iL2^ (x,y,t)] + 0 a w (x,y,t) (5.11)
ax 2 y2 ta

Setting x = I in (5.11) and differentiating the identities in (5.6) with respect to t,

we see that the left hand side vanishes. Then, comparing (5.11) with (5.8)

t y,t) = !-- 
2v (w,y,t) R a(y), 0 4 y 4 W, 8 4 t 4 T 6 , (5.12)

ax ay 2

the last identity being valid as a consequence of the first condition in (5.6).

The two conditions, (5.8) and (5.12), satisfied by # at the boundary x = a enable

us to use Holmren's uniqueness theorem (see [5] or [13], e.g.) in much the same way as it
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was used in the proof of the approximate controllability of the wave equation in [22], [23]

to see that if

T > 2 + 28 (5.13)

then # must be independent of t for 1 + 3 4 t O T - 1 - 6, i.e.

*(x,y,t) - *(x,y), (x,y) e R, 1 + 6 4 t 4 T - 1 - 6. (5.14)

Because v and w satisfy the wave equation in R with the homogeneous boundary

conditions (5.6), and are of class C in R U B, we have C"- convergent expansions

+ - iwkjt e-Wkjt
v(x,y,t) - v0 (x,y) + (v e + )sin kx sinjy , (5.15)

k-I j-1 ki kj

- 1w t -i jt
w(x,y,t) - w 0 + k (wk ki + wkje )con kx cos jy , (5.16)

where

wk j = /k2 + j2 (5.17)

v0 (x,y) is a C function in R U B such that (cf. (4.10))

Vo(x,y) = 0, (x,y) e a - {(w,y)0 4 y 4 i} (5.18)

and w0  is a constant. Then, from (5.8),

3v0(x,y)
*(x,y,t) a a

coskx[j (akvkjsin Jy + iwkjwkjcos jy)e

-iw kit
lJ (akv ksin jy - iBW kjWkj cos jy)e , 5.19

still e
-  

convergent for (x,y) e R U B, < t < . Noting (5.14), we see that the

left hand side takes the form

av0 (xY) 3V0 (xY)
*(x,y,t) a - x *(x,y) - a -

1 + 5 C t 4 T - 1 - 6 . (5.20)
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We now strengthen (5.13) to

T ) 4 + 26 (5.21)

and we see that the time interval in (5.141, (5.20) has length > 2, i.e.

T - 1 -(1 + 6) - T - (2 + 26) > 2 . (5.17)

Since the functions coo kx are orthonormal on 0 4 x 4 w, we conclude from (5.19),

*(5.20) that for k 1,2,3,...

(akvkj sin jy + ioakjWkj Con 
Jy)e 

W k
i
t

J-1

I- i (a kvsin jy - 10 kcos jy) - 'W j t

J-1

2
- f *(x,y)cos kx dx Z #k(y), I + 6 4 t 4 T - 1 - 6 . (5.22)

0

Classical results of Levinson and Schwartz ([17), [27]), which have frequently been

used in control studies of this type (see, e.g., [121, [211), can now be used to show that

for each fixed k, the exponential functions

e tie kjt oei 2+ t
s , J - ,2,3,...,

together with the constant function I are strongly independent in L
2
(1) for any

t-interval I of length > 2. This clearly contradicts (5.22) unless we have

5k(y) R 0, 0 4 y 4 W (5.23)

and

akvkjsin jy + iBo)wkjcos jy = 0, 0 4 y 4 W, j = 1,2,3....

But then, since for each j sin jy and coo jy are independent on 0 4 y 4 w and since

none of a, k, o, w. are zero, we conclude that

Vkj - 0, wkj - 0, k 1,2,3,..., J - 1,2,3 (5.24)

Since (5.22), (5.23) show that

*(x,y) J 0 k (y)cos kx = 0
k 1
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(5.19) gives

*(x.y,t) - *(x,y) = a . x , (x,y) e R , (5.25)

1+5 8 t(T- 1- .

Noting (5.15) and (5.16) and the fact that v(O,y,t) 5 0, we conclude from (5.23) that

V(X.Y,t) i v0 (x.y)

0 1 + 6 4 t ( T - 1 - 5 • (5.26)
w(x~y,t) 2 w0 , J

Since v(x,yt) 2 vo(x,y) is a solution of the wave equation with (cf. (5.18))

v0 (x,y) - 0, (x,y) e 9 - {(w,y)I0 4 y 4 W)

it must in fact be a solution of Laplace's equation there. Then we compute

2 av 2 v0

I[(W- 2 (xy)) + (i~ x.y)) + v0 (x,y)( 2- (x,y) + - (x,Y))]dxcdy
R ax

= f div(v 0 (xy)grad v0 (x,y))dxdy
R

= f v0 (x,y)grad v0 (x,y)*V(x,y)ds - f v0 (w,y) ax (wy)dy ( (5.27)
3 0

Combining (5.9) and (5.25) with the fact that v0  satisfies Laplace's equation we conclude

from(5.27) that

3v 2 av 2
I [( (x,y)) + 'L (x,y)) ]dxdy = 0R

and this, together with (5.18), implies

v 0(x,y) E 0 (5.28)

Combining (5.26) and (5.28) we conclude that

v(x,y,t) E 0
.0 (x,y) e u, - < t < (5.29)

w(x,y,t) E w0

the result for -< ( t < - being an immediate consequence of the result for
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I 8 + t 4 T - I - . since this is true for every > > 0 and every e(t) in (5.4),

(5.5), we conclude that a com arable result obtains for V ; in (4.11), (5.2). (5.3). It

follows (since w - constant is a zero state in ; and in H) that (cf. (4.9) ff.)

I(;0. 1 *;0 ,; 1 )1; - I( 0 ,V 1;t j 1O )1jI - 0

and, from the discussion in Section 4. the approximate controllability result follows.
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6. SOME EXACT CONTROLLABILITY RESULTS IN THE CASE OF A CIRCULAR CYLINDER

We consider now the case 11 R X (--mm) With

R-[(x,y)Ix2 + y2 <

3 3R - {(x,y)lx
2 +y2 . 1

with introduction of the usual polar coordinates r,S, the equations (4.1), (4.2) now

become
2 2v v 2v

Y v +~ 1 Sv + i(6.1)

at
2  ar

2  r Dr r 2 362

a2w 2 W Io 2.
.w a -+ - + 2 (6.2)

St2  Sr
2  r Sr 

2 302

and the boundary conditions (4.3), (4.4) are transformed to

T_ (1,6et) - au(8,t) , (6.3)
St

Yr- (1,8,t) - Bu(e,t) . (6.4)Sr

Writing

r ike
v(r,6,t) = L Vk(r,t)e k, v k - Vk # (6.5)

kl-k9

w(r,6,t) = w k - Wk , (6.6)

u(O,t) - X Uk(t) eike (6.7)
k.-m

we arrive at an infinite collection of control problems in the single space dimension, r:

2Vk 2vk )Vk k 2

.- 4 - k Vk - 0, -< k < 0 , (6.8)
a 2 3r2 r r 2

=k  . k k 0, k < (6.9)-t2  " -r2  +r Yr- " -2 wk ' , - ( 6

St2  Sr r
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I ~ ( I ' t ) a u k ( t ) ' < k < e •( . 0

a m k
T)- (1,t) - auk(t) ,  - < k < . (6.10)

We will first treat the equation (4.1) with the boundary condition (4.3) which, as we

have seen, reduces to the set of problems (6.8), (6.10), - < k < -. With

i ik avk(r~t) 1k, 9v
z(rO.t) - 1 z(rt)e - (r,O,t)

k
- -

--

we have the equivalent first order systems

3 (vk(rt) - (0 )(vk (r t) - L vk (r ' t) (6.12)Ttz k(r~t)) L IkI 0z k (r~t)- LIkIz k(rt))(.)

where Liki is the differential operator on the right hand side of (6.8). The boundary

conditions (6.10) become

zk(lt) - uk(t), - < k ( . (6.13)

The eigenvalues of the operator L 1kI with the corresponding homogeneous boundary

condition

Zk ( 1,t) = 0 (6.14)

are
0, ±iaa1 1 1 1 ,• 1 1,2,3,...

where lkit is the I-th positive zero of the Ressel function Jjk1 (r) of order Ik.

The correspondinq vector eigenfunctions are

#1k ,(r) , . kl (r) -- <k < -

0 1±iW 1 1 1 1 #11 (r))' .- 1,2,3....

where

( A k ,r < k < (6.15)
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ikl~r) Alkt~lk(Wlk~tr) - < k <-
Ikl kIjkj Iki= 1,2,3.

The normalization coefficients Alkj, 0 , AIkIL, are chosen so that

2 1 1

f rI (01  drr, (t 1,2,3,.... (6.16)
0

Thus
A- < k <-

lkI,O " W (6.17)

while, as may be seen from (51, e.g.

A IikI (6.18)
all /W Jjkl,t(O lkl,J )

The state space in which we wish to work, for the present at least, is (cf. (2.18))

= {f()Iv e H (R), z e L2
(,)}

with the inner product

((i), (2)) - f (VvI.v 2 + z 2 )dxdy

z1 z2 R

and associated norm. Since the # Ik satisfy the homogeneous boundary condition (6.14)

one easily sees that

ikO _1____A( _O___

H(kh RI= IkI,0e kIO

+ fke kIlkl,O ekO - +kS IkI + 1 2v+ iO e  
3r d + w o IkdO#jk r 0

- 21kl(IkI + 1), < k < - , (6.19)

while
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+ f V~jkI,°V**lki,A dxdy- 2X1kj1 I 1kl, d dy 2lkl, (6.20)
R

where

IkIL - (w t)2 < 
k < o, I - 1,2,3,.

The state ( 0) has zero norm in H. Nevertheless we will not neglect this component.

If v, V both satisfy the wave equation and (6.3), (4.13) on 3R with initial state

(4.5) for v we have (cf. (4.16))

((V(.,.,T)) (;t.,.,T))) f T 3;

,,T) ( -,T' = a f f u(x,y,t) - (x,y,t) dsdt . (6.21)
z( ) ( ) 0 n-a3

It may be shown that this result is valid for all u for which the solution (in the

generalized sense) v lies in 1 and varies continuously with respect to t. This class

of controls u is discussed in (19] and is known to include, e.g., u e C(O,T];H 1 /2 (a)).

If we assume ( given by the H- convergent series

(V:::) kO ) +

( 0,t-. VkO(t)(+,kj,Oe

do-r +- #jk1 *ikOe 3 Ol t tktLC A

k- -I I k 1  LW ikj,,,kI,£ikO t iW ,Ik9je

and successively let

;(-,-,t) . 1kk ,OaW e iW kj,Z 
(t -T )  #jkj ,e A

= 
W )[:,X eikO 3

e-im kl j(t-T) *kI ,1e A - < k < -(

-iCm ki ,1Ojj, e I - 1,2,3.... (6.22)
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for T > 0 we arrive at the equations

T 2, 0 -ikI

2IkIlIkI + )v (T) - a f u(l,t) I)1 e dkOddt
kO a0 3r

a.#kl, o  T
-2w S0 (1) fu(t)dt (.3- 2wo 3r I1J Ukll , (6.23)

0

+ T 2W iIkIl,(I T -t) #Ikl,t -ikO
2X +k(T) - a f f u(l,t)e r (1 I dedt

0 0

2we kj3 1 f T a (T-t) , (6.24)
0

T 2w -iwIkIJL(T-t) '#kl,t -ik
2A lkl,tVk (T) - a f f u(O,t)e ar (1) e- dedt

0 0

34a kl fT e -iw ,kIT-t)
- 2w , - ore u (t)dt. (6.25)

0

Thus the Dirichlet boundary control problem for (6.8), (6.10) is reduced to a moment

problem (6.23), (6.24), (6.25) for which uk(t) must be a solution. We proceed in much

the same way with the Neumann boundary control problem for (6.9), (6.11). We let

ik wk (r,t, ikO 3w
C(r,O,t) - (m = at • =- (r,O,t)

k-- k--

and obtain, in place of (6.12),

- (wk(r,t)) . (0 I (wk(r,t)) (vklr,t)(Iki C(r,t) kItC k(r 't ) '  14I Ck (t -/kI zk (r,t) 1.)

The boundary conditions are now

awk
f- (1,.t) - OUk lt) , - < k < .

The eigenvalues of MIkI with the corresponding homogeneous boundary condition
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Dvk
" (1,t) - 0

are, for k a 0,

0, tiv0  I 1,2,3,...

where vOs is the 1-th zero of the differentiated Dessel function, J6(r), of order

0, and, for k * 0,

where Vk,A is the 1-th zero of J1 r). In the case k - 0 the eigenvalue 0 has double

multiplicity. The special solutions taking the place of (6.22) in this case are

; , ,t ) *00) ( - T 00(

= , 36.27)(, t) 0 00

where #00 is such that (cf. (6.16))

1 2 1 =1
fr#O2 dr = ,i.e. *0 /f ~ 00  2w 0
0 '

In all of the other cases the vector eigenfunctions take the form

(tiv
*ik l,t,(rl ()) - < k < 9, £ - 1,2.3,...

where

(r)- - k <

OlkbtL(r) Bkljt JkllJkl r) J - 1,2,3,...

the normalization coefficients

v lk lt 
(6.28)nlkl" /1 (Ulkij k k2) l/2jjkl(Vjkj,f )

selected so that

( 2frI*lk,l,(r) 12dr " -=

0

The corresponding special solutions of the homogeneous equation are
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: o t)) 1" Ik 
( t - T ) kS

t e ik

IkIJILj

-V (t-T) ,ike

e j t-iv IkI 4P ,Lk ikO (6.29)

As in (6.20) it may be seen that

2 
2 

Ikl,, ' ± i V j k tlklj 12 1 I I " 'jI k f , jE ( V fk l , t)

Let w satisfy the wave equation and (6.4) with w(x,y,O) 0 0, C(x,y,O)

(x ,y, 0) 0 in R. We expand M in the form
atC

t~) .00(t) 00 + Coo(t)(1 0(w(:::"t)., 0 Wo() °o o t oo

I k ei" k 40 k ,, ' * ° O~iO )+ fik '
k

-  
I iktet -iV

If V satisfies the wave equation and the homogeneous boundary condition (cf. (4.14))
a;;
TV (x,y,t) = 0, (X,y) e B, t : 0

we find (cf. (4.16), (6.21)) that

T
((W(',"T)1  fw( T))) = B I u(xy,t) (6 .30y,t) )d . 6.0

*,T) H 0 f3R

Employing (6.29), (6.3) successively for we arrive at the equations, for

- < k < , = 1 , ,. ,
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Iki ,L

000

0

T 2W -iv (,LT-t)l

2p1kl w, (T) = -0 f f uC6,t)iv I  k (1)e dedt
k1 I 0 0 1k e IJk' e

_______T -iv kCT-t)

- -2wviv.lkl, Ckl,t(1) f e Utd. (6.32)
0

We find also, taking in the second form given in (6.27), that

T 2w T

C00 (T) - f f U(e,t)4i.d~dt =2w$B O- f U0 (t)dt .(6.33)
.0 00 00 0

d

Since this must be true for all T and T w00 (t) = C00 (t), we have also

T
00 (T) - CWO 0f (T - t(u0(tidt (6.34)

0

Since '1kl, = (V IkII 2 , (6.31), (6.32) become

i +Vklv CT-t)

W0 1 -8 e''' uk(t)dt . (6.3
0

CiL T) a-(V fT e iv 1k1,1(T-t) u( 63

i~i wk,I IkIjt IkI,I IkIZ k

Taking account of the fact that

w A IklJ I

Ill IkI ,L IkI,L

(6.24) and (6.25) yield
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W-kI v +(T) - A 3 (tmi I ( fT iW. lL T u Ctidt , (6.37)To kj lklchi 3r Jkl~t a Ic

W 1iicL v,(T - A 3IhIJ (W i Ikil (T-) (tOdt * (6.38)
we k, kl,1 3r Jkl~t 0 kc

On the other hand

31Il ,(1) - A III
ar lkl,O

so (6.23) gives

Ikl +1. v~c (T) =Al 0  T (6.39)we kO JkO fU.k(td

[0

Using the formula (6.18) and (6.28) for A 1 1 1 1' and B lkj we have

V T iv (T-t)

"lkl 1 + . 1Jk' £ l l  Ullt, 1,7

V i k .CT) f k

- -V k T -iV lkltT-t)
Vo, v ,t (T) - 2 2 f u k (t)dt (6.41)

b 3 1 k, t v4.  C T ) 0 1 T ) C

11) v + ( u (t)dt (6.42)

To k A, ,0 0_k

v (T) f T j ( 5'' (6.43)

WL Vk ,0T All0  k~td 631

The equations (6.39) become, in view of (6.17),

r Vjkj(l + 1 v (T) - /21 k uT t(t)dt (6.44)
, ( 1, - 1  0

This is valid, but meaningless, for k - 0. It is easy to see that in the case 0 we
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should use

V 0 0 (T) = f uk (t)dt ( (6.45)
/ ,= 0

The equations (6.33) and (6.34) are left as they appear. We note that all of the

coefficients

IkIL 1 V21kI
2 1/2 -' - " k * 0, 2wo (6.45)

(OIkI,1 -

are bounded away from zero, uniformly with respect to k.

It is also possible to show, using the work (101, [111 of K. D. Graham, that the

numbers
0, v"k(,1, wIkI,1' "IkI,2' WI,2...VlkIj' wIki,).

are separated by a gap at least equal to w/2 again uniformly with respect to k.

Applying the result [14] of A. E. Ingham along with the work of Duffin and Schaeffer [7],

much as in [121, [21, [31, we conclude the existence of functions uk(t) in L2 [0,T], for

any fixed T > 4, solving the above moment problems, - < k < -. Moreover, the result of

Ingham implies as explained in [12], [261, that for each k

-22 T 2 22
c Nk < f IUk(t) dt 4 C2Nk

where

2 = 21kl(lkI + 1)Iv (T)l
2

k k,0

+ 2 + IV- (T)I2
111kl l~wt(T)I 2 Xll,2t=1 Ik , kitIl , ,

+, ,,w +.( ,,2 .+ IkIj, Iw.k, .(T)l2
1= 'J k t =1

k ±1,±2,.... For k = 0 we must add I 00(T)I 2 + 1w0 0 (T) 12. Since

T T2

f 2 u(8,t)1 2dedt - i f lu k(t)1 2dt (6.46)

0 0 k- 0
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we see that the above moment problems, equivalent to the control problem, can be solved

with (6.46) finite, provided that

k k 
<

which is the same as saying that the norm of the final state in H should be finite. We

have, then, the exact controllability result that any H state may be controlled to any

other H state during a time interval of length T > 4 with the control configuration we

have described here. As discussed in connection with the wave equation in [FF1, [GG], one

cannot be sure that the state of the system remains in H for all t e [O,TJ. However, in

the present case of the Maxwell equations one can show that these states do lie in

H Hz,d(R).
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7. CONCLUDING REMARKS

The approximate controllability results of Section 5 would appear to be extendable to

domains other than rectangular ones but the precise method of extension remains to be

worked out. We will indicate some aspects of this problem which are clear from our current

work.

First of all, the result of Section 5 is almost trivially extended to the case where

control is exercised only on a subset {(w,y)j0 4 a 4 y 4 b 4 T), b > a, of

((w,y)0 I y C w). The only change is that the interval 1 + 5 4 t 4 T - 1 - 8 appearing

in (5.14) and subsequently must be modified to d + 6 • t 4 T - d - 6 where

d - inf { sup _ (n _
a~y~b 04E9w

If *(I,y,t) I Px (wy,t) 2 0 for 4 • t 4 T - 8, a • y • b, the Holmgren theorem will

still apply to show that *(x,y,t) 3 0, (x,y) e R, d + 8 4 t • T - d - 6. After that the

remainder of the proof is the same: the same eigenfunctions and frequencies must be dealt

with, the functions sin jy, cos jy are still independent on a • y 4 b if b > a and

the conditions

v0 (x,y) - 0, (x,y) e a - ((w,y)a 4 y 4 b)

-r (w,y) - 0, a 9 y 4 b

still show v0 (x,y) E 0 in R.

The first limitation of the method which we have used in Section 5 lies in its

dependence on the construction of #(x,y,t) as a linear combination of partial derivatives

of v and w. It is necessary to have a solution of the wave equation to which Holmgren's

theorem may be applied. This part of the proof can still be used for non-rectangular

domains as long as a portion of the boundary on which control is applied is a straight line

segment. Assuming the segment parallel to the y-axis, one can construct # by the formula

(5.8) again and show that # and 21 both vanish on the straight line segment in
ax

question, allowing subsequent application of the Holmgren theorem to show *(x,y,t) E 0
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for (x,y) eR and t in some interval d 4 6t T-d- with d depending on the

geometry of R. But then we are faced with a second limitation.

?he second limitation of the method which we have used lies in its reliance on the

specific torm of the eigenfunctions and frequencies to pass from *(xy,t) 1 0 to the

conclusion that both v(x,y,t) and w(x,y~t) are likewise identically zero. It needs to

be emphasized that no local analysis will suffice here. In the one dimensional came (see

our remarks at the end of Section 3) if the control problem in stated for boundary

conditions

v(0.t) - ,O (1 ,t) - Mu~t) (7.1)

(0,t) - 0, a 1x t O u~t) (7.2)

the V.wconstructed as in Section 4 will satisfy the wave equation and

(~).0 v(1,t) . 0 ,(7.3)

bw t -1 t) 0, (7.4)
ax x

Ta (1,t) I- (1,t) 2 IA1) =0 (7.5)

Here if we take wto be a non-zero solution of the wave equation satisfying (7.4) and

take

v~x~t) = ! : W (c,t)dc
a 0St

we clearly have ;(0,t) - 0,

t 0 St2

Sw (!: Sw~ )
a 0 OC a~td ax~j (0 T) ; 1t)
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32; (x,t) - - (C,t)d;t
2  

0 t
3
I

"" 0 tS2 2" a
;0f 3;(C,t)dC sw2

so that v satisfies the wave equation and, clearly, (7.5) is also satisfied. Thus the

wave equation with (7.1), (7.2) is not approximately controllable; *(x,t) S

a ax (xt) + 
0 3 (n,t) 3 0 but this does not imply that V or w are identically equal

to zero. The additional condition which makes this work in (3.7) ff. is the fact that one

can show there that

-0 G (Ot) + B i (Ot) = 0

It seems likely that the question of whether or not * = 0 implies that both v and w,

equivalently ; and ;, are both zero must eventually reduce to a boundary value problem

of an as yet unidentified type.

At the present writing there is only one, rather curious, result which we can offer

which yields approximate controllability for a domain R of rather general shape. We

suppose that the "control boundary* 91  B 3 R includes two nonparallel line segments,

1l and £20 with unit exterior normals v and v2. Proceeding as before we can show,

applying the Holmgren theorem together with

avi a- " 0 n 11, 12

V- 1 0, 1 1,2 on 1" it2 respectively,

a ̂ + aw " 0, i 1.2 on £1, I2 respectively,

that both
;3v 3wA

a a + LW (7.6)
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#2 - +6 * ." , (7.7)

must vanish identically in R for d + 8 4 t 4 T - d - S. 6 > 0 arbitrary, d > 0

depending on the geometry of R and N, the location of 11 and i2 within 5, etc.

But then both * and *2 must vanish on 1, (say) for these values of t. Subtracting

(7.6) from (7.7) we see that

-vl - 'v) 0 0 on 1 x Ed + 6, T - d-6]

1 2

This shows, since I1 and I are not parallel, that a nontangntial derivative of v
3v

vanishes on L1 x Ed + 8, T - d - 6]. Combining this with t - 0 on 1and applying

the Holmgren theorem to v alone, much as in [5], [13], we are able to conclude v E 0,

provided T is appropriately large. Then one easily has the sae -- 7 lt for w and

approximate controllability follows.

This result gives approximate controllability for R equal to the interior of any

closed polyhedron in R2 with control on at least two sides.

Further inspection of this argument shows that only £2 needs to be assumed to be a

line segment. That is needed in order to identify #2 as a solution of the wave

equation. We may then take II to be any smooth portion of B1 which is never parallel

to I1 and achieve the same result.

Finally, let us indicate that we are very much aware of the limitations, from the

point of view of actual implementation, of the control configuration discussed in this

paper. In principle, at least, the boundary conditions (1.7), (1.8), along with the

further "single layer" condition discussed in connection with Figure 3.1, could be achieved

with conducting bars attached to terminals as shown in Figure 3.
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Figure 3. Conducting Bar and Busses

The perfectly conducting busses perpendicular to the boundary of al ensure that the normal

component of 1.E VOin zero just outside L0, provided that no net change is allowed to

accumulate at the boundary of 0, i.e., in the conducting bar. Thus the potentials at

C and D must be regulated so that the potential difference C - D ensures the correct

controlling current through the surface bar B while C + D is set so that there is no

accumulation of charge at the bounding surface.

W9e have not considered any effects of propagation delays in the controlling circuits-

i.e., we have not assumed that these are distributed parameter systems. This assumption,

and evident limitations on the speed with which prescribed currents can be computed and

established in the controlling circuits together with sensing limitations, place admittedly

severe limitations on what can be done "open loop". rt is likely that the eventual

significance of our results will be most evident in connection with closed loop behavior

wherein time varying mami etic fields Anear the boundary of Q induce currents in the

bars a which, being resistive, will then act as energy dissipatora. we hope to discuss

this topic in later work.

-44-



Another control configuration nasy be obtained by supposing the boundary of Q to be a

perfectly conducting sheet of material to which electromagnets are attached in a dense

array as shown in Figure 4.

Figure 4. Electromagnet Array

If J denotes the current through the windings of the electrom'agnets, then we shall have

ET 0

and

where a is dependent on the electromagnet's configuration. The theory in this case will

take much the same form as the one discussed in this paper.
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